
Advanced Design System 2002

Series IV Design Translation

February 2002

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available
upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)
and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 2002, Agilent Technologies. All Rights Reserved.
ii

Contents
1 Series IV Migration Overview

Changes Between Series IV and ADS ... 1-2

2 Importing and Simulating
Importing Designs .. 2-2
Simulating Imported Designs ... 2-5

3 Translating Design Libraries
Copying Designs to a Series IV Project.. 3-1

Translating Subnetwork Design Files ... 3-2
Relocating Designs for Site-Wide Use ... 3-3
Translating the Top-Level Designs.. 3-3

4 Updating User-Defined Models

5 Translation Example

A Series IV Items Not Translated

B Nonlinear Model and Component Changes from Series IV to ADS
PN-Junction Diode Model... B-2
Bipolar Transistor Model ... B-3
EEsof Bipolar Transistor Model .. B-4
Junction FET Model.. B-5
MOSFET Models (Levels 1, 2, and 3) .. B-6
Curtice-Quadratic GaAsFET Model.. B-8
Advanced Curtice-Quadratic GaAsFET Model... B-11
Curtice-Cubic GaAsFET Model .. B-12
Statz (Raytheon) GaAsFET Model ... B-15
TriQuint Scalable Nonlinear GaAsFET Model .. B-18
Equation-Based Nonlinear Components .. B-21

C Translator Customization
Writing Custom Translation Rules .. C-1

Retrieving Parameter Values from Series IV Data Items.................................... C-3
Setting Parameter Values Using AEL Functions .. C-3
Mapping Component Pin Changes .. C-7
Mapping to a Component Based on Parameter Specifics.................................. C-8

Using a Customized Rules Files... C-8
Customizing Translator Variables ... C-10

D Batch Mode Translation
hpeesofme Setup ... D-1

Windows... D-1
iii

UNIX... D-1
Executing hpeesofme ... D-2

Additional Option Information ... D-3
Example.. D-3

E Known Issues
Annotation Location.. E-1
Artwork Macros .. E-1
Node Names .. E-1
Port Rotation... E-1
AEL Functions .. E-2
iv

Chapter 1: Series IV Migration Overview
ADS 2001 contains a utility for migrating from Series IV to ADS. Migrating from
Series IV to ADS is a process that involves moving your entire Series IV design
process into ADS. This includes migrating custom libraries, models, and AEL macro
scripts, as well as translating design files and projects. This manual describes the
migration process and the design file translation utility. Once you have successfully
migrated your design process, you can take advantage of the full power of ADS with
your existing designs.

The translation process is simple in theory; the Series IV components are replaced
with their ADS equivalents. While it is logical to assume that ADS will yield the
same simulation results as Series IV after translation, there are many reasons for
minor differences between the results. Some components (particularly nonlinear
ones) have improved models in ADS. The ADS simulators also have been improved
and have new algorithms. Finally, there are differences in the way the tools define
simulations and parameters. The translation utility may not be able to resolve these
differences. To ensure that your ADS simulation results match those in Series IV, you
should understand the basic differences between the two tools.

The next section highlights the main differences between Series IV and ADS. Please
read it carefully before beginning any design translation. Detailed information about
specific model differences and items that are not translated can be found in the
following appendices:

• Appendix A, Series IV Items Not Translated

• Appendix B, Nonlinear Model and Component Changes from Series IV to ADS

The information and procedures documented here assume you are familiar with both
Series IV and ADS. If you have never used ADS before, review the online Quick Tour
to familiarize yourself with the basics of ADS.
1-1

Series IV Migration Overview
Changes Between Series IV and ADS
This section describes some of the changes that you should be aware of between
Series IV and ADS. Some areas may require manual changes after the translation is
complete.

Table 1-1. Series IV to ADS Changes

Defining Schematic and Parameter Units

Dimensional units and scale factors for component parameters were defined in Series IV
through the Defaults window or in a design’s UNITS item. ADS has no direct equivalent to
the Defaults window or UNITS item. Instead, units and scale factors are defined individually
for each parameter. The default ADS units are defined through Options > Preferences in the
Schematic (or Layout) window. This difference can cause translation problems if hierarchical
designs contain different unit definitions than the Defaults window. During translation of a
project, the units from the Defaults window are used; all other units are ignored.

Test Benches and Test Labs

In Series IV, simulations and many measurements were defined in test benches and test
labs. There are no direct equivalents to these in ADS; the translator creates hierarchical
schematics where an instance of the schematic is placed in the simulation design. Note that
ADS simulation controls may not offer exact duplication of functions. In particular,
measurements and measurement equations will not translate in a functional manner.

Nonlinear Model Data Items

For differences between the Series IV version and the ADS version, refer to Appendix B,
Nonlinear Model and Component Changes from Series IV to ADS.

Conductivity Values

In Series IV, conductivity (RHO) was specified relative to gold. Gold has a conductivity of
4.1E7 Siemens/meter and in ADS conductivity is expressed in Siemens/meter. Note that
conductivity values are converted during translation. Note the following values used in ADS:
5.80E7, Copper
4.10E7, Gold
6.20E7, Silver
3.80E7, Aluminum

Output Equation Measurements

The Series IV OUT_EQN item is obsolete, but it is translated to a MeasEqn item.

OmniSys Designs

ADS (beginning with version 1.0) provides an alternate and much more powerful alternative
to the Series IV OmniSys simulator. There are major differences between the two tools that
prevent automatic translation of these designs Only certain passive OmniSys models that
were available for use in Series IV circuit designs can be translated.
1-2 Changes Between Series IV and ADS

Series IV Data Items

The items listed below were placed in the Defaults window in Series IV. This concept does
not exist in ADS and these items are not translated as individual components. The table
below identifies how this information is brought over in ADS.

Data Item Notes

NPAR

MCOVER

MWALL

MDIFLIST

PERM

PWLSRC

RREF

SIGMA

TAND

TEMP

No ADS equivalent

Translated as the Hu parameter of the MSUB component

Translated MLEF, MLIN, MLOC, MLSC

Translated as the iVarn, iValn parameters of S2PMDIF,
where n = 1 to 10.

Translated as the Mur parameter of substrate components (such as
MSUB)

Parameter information included in ItPWL or VtPWL component

Translated as individual parameter for individual components (e.g., Z1,
Z2 in Amplifier)

Translated as an individual parameter (Sigma) for individual
components

Translated as the TanD parameter of substrate components (such as
MSUB)

Translated as the Temp parameter of components that reference a
substrate component (such as MACLIN)

Differences Between Harmonic Balance Simulators

While the harmonic balance simulators used by Series IV and ADS are conceptually the
same, there are implementation differences that can potentially result in simulation
differences between the two. This applies particularly to the FFT sampling algorithms in the
nonlinear simulators.

To ensure the best possible agreement between Series IV and ADS Harmonic Balance
analyses, the full harmonic content of the circuit under test must be characterized. If this is
not ensured, Series IV and ADS harmonic balance results will have significant, little, or no
difference at all; this strictly depends upon the amount of nonlinearity in the circuit under test.

Table 1-1. Series IV to ADS Changes
Changes Between Series IV and ADS 1-3

Series IV Migration Overview
S-parameter Data Interpolation

You must ensure that S-parameter (or any other frequency-dependent) data files contain all
frequencies that are encountered in the simulation, you must keep in mind that a Harmonic
Balance simulation will run the analysis at DC and at the highest harmonic specified.
Consequently, S-parameter files must have these frequencies specified. When DC, or
higher-frequency data, is not present, the simulator will extrapolate. Extrapolated results
between Series IV and ADS can potentially be different because of implementation
differences.

Phase Noise Differences

Phase noise simulation technology is very abstract and its development is presented with
strong technical challenges. Consequently, since the time it was first introduced into
Agilent-EEsof products, it has undergone a maturation process. In ADS, to address this, and,
to instill a sense of confidence for the user, ADS offers two separate phase noise methods,
pnmx and pnfm (Mixing analysis and FM sensitivity analysis, respectively). Refer to the ADS
Circuit Simulation manual for details.

Series IV, like ADS, also uses the pnmx and pnfm phase noise algorithms. However, there
are limitations with the Series IV implementation. Below are those that can significantly
contribute to ADS/Series IV phase noise discrepancies.

-The pnfm models in Series IV are deficient, lacking several important terms.

-The pnmx model is implemented using only half of the correct number of small signal
sidebands. One of several problems incurred with this is that it is more susceptible to the
flattening problem at low offset frequencies.

-Series IV mistakenly adds the pnfm and pnmx results together, instead of showing them
separately.

Nonlinear Vendor Library Component Simulation Temperature

In Series IV the default temperature used was 27 degrees C. In ADS the default temperature
used is 25 degrees C. If Series IV designs containing nonlinear vendor library components
relied on the default temperature, your simulation results will vary. The workaround in ADS is
to set the desired temperature via the Options Controller (available in most simulation
controller libraries).

Table 1-1. Series IV to ADS Changes
1-4 Changes Between Series IV and ADS

Chapter 2: Importing and Simulating
This chapter outlines the basic steps for successfully using the Series IV design
translation utility. Details about the translator and its configuration are described in
Appendix C, Translator Customization. Known defects and areas that may require
manual changes at some point in the translation process are described in Appendix
E, Known Issues.

Note If the design or project you want to translate references designs that reside in
another location, such as a library, then you must translate those designs first. For
details, refer to Chapter 3, Translating Design Libraries. The same is true for
designs/projects that reference Series IV user-defined models. For details refer to,
Chapter 4, Updating User-Defined Models.
2-1

Importing and Simulating
Importing Designs
The translator allows you to translate designs individually or collectively. However
when you translating designs individually, take the following into consideration:

• If you select an individual design to translate, and that design is hierarchical,
the subnetwork designs are also translated. Note that if you translate once, go
back to Series IV and make any changes to either the top-level or subnetwork
designs and translate again (into the same destination project). Only the
top-level (or specified) design is re-translated.

• If you translate designs individually, and any of those designs is referenced in
multiple test benches, it may cause a translation error when the test benches
are translated.

• If different designs in the project are based on different defaults designs, you
should import those designs individually rather than as part of a project,
because you can only associate one defaults design with a project on import.
Importing designs individually enables you to associate unique defaults designs
with each.

• If a Units Item exists in the Schematic window for an individual design, that
Units Item is used; otherwise, the Units Item from the selected Defaults design
is used.

The following considerations apply to translating both individual designs and
projects:

• Spaces are not allowed in project paths or project names.

• Series IV design names consisting of or beginning with the word untitled (such
as untitled1.dsn) are not allowed. If your project contains any designs named
this way, an error message will be displayed.

• Names of built-in ADS components are not allowed as design names. If
duplicate names are encountered, your designs will be renamed by the
translator (an R_ will be added to the front of any such design names).

To import a Series IV design or project into an ADS project:

1. Start the translator:

• UNIX—At the prompt type siv2ads

• PC—From the Start menu, choose Programs > Advanced Design System 2001
> ADS Tools > Series IV Import .
2-2 Importing Designs

2. To begin the import process, select Series IV Design or Series IV Project from the
File Type drop-down list.

3. Identify the SIV Design Name or the Series IV Project by entering the path and
filename or project name, respectively, or use the Browser to select it.

4. If more than one defaults design exists in the project, select the one you want to
associate with the individual design, or if importing a project, all designs in the
project.

5. In the ADS Project Name field, accept the proposed ADS project name or specify
a different one.

6. In the Directory for ADS Project field, type the complete path, or use the
Browser to set the path.

7. Click Length Units and select the appropriate setting. Note: This setting
establishes a default for components placed in the new project, beyond
Importing Designs 2-3

Importing and Simulating
translation. This unit setting serves as a default for all designs in the project
and is both:

• The unit of measure for parameters with physical length (in both Schematic
and Layout windows)

• The design unit (grid display and cursor snapping) in the Layout window

Note The unit used for grid and snap features in the drawing area of the
Schematic window is inches, and cannot be changed. When you see choices in
various dialog boxes for screen pixels or schem units, the schem units are inches.

Click OK to establish Length Units.

8. If the design(s) you are translating reference any user-defined models for which
you have created one or more customized rules files, click Custom Rules . Click
Build Database . When it is done building, select the option Use Custom Database ,
and click OK. For details on creating and using customized rules files, refer to
“Using a Customized Rules Files” on page C-8.

9. Click Import to begin the import process.

The Status window displays feedback during the import process. This
information is also written to a file, me_prj.log. Detailed information about the
translation can be found in the file me_err.log.

Note These files are created in the ADS project directory and are overwritten
with each subsequent individual design translation into this project.
2-4 Importing Designs

Simulating Imported Designs
Advanced Design System simulations are performed within the Schematic window.
All data produced by a given simulation is stored collectively as a data set. Every
data set has a name associated with it. You can assign a name prior to simulating or
you can accept the default data set name. The default name is the name of the
current design, with the extension .ds automatically appended.

Note If you accept the default data set name and perform multiple simulations, the
data set will be overwritten each time. To collect separate data sets for each
simulation, specify a unique name (for the data set you are about to create) prior to
each simulation.

To specify a data set name prior to simulating:

1. Choose Simulate > Setup .

2. Supply a name in the Dataset field. (Click Browse to view existing dataset
names in the current project.) Note that data sets are stored in the /data
subdirectory of a project. This means that different designs in the same project
directory should all generate data sets with unique names.

3. Optionally, select a different Remote Simulation Host for the simulation, if you
are running the simulation on a remote machine.

For details on setting up your remote and local machines for remote processing,
refer to the appropriate appendices:

• Appendix E, Using Remote Simulation in the Installation on PC Systems
manual

• Appendix D, Using Remote Simulation in the Installation on UNIX Systems
manual.

4. Click Simulate .

For information on simulating a design, refer to “Basic Circuit Simulation
Procedure” in the Circuit Simulation documentation.

5. Display the simulation results.

For information on displaying simulation data, refer to “Displaying Simulation
Results” in the Data Display documentation.
Simulating Imported Designs 2-5

Importing and Simulating
2-6 Simulating Imported Designs

Chapter 3: Translating Design Libraries
Translating design libraries consists of several steps. If any of the designs are
user-defined (as opposed to designs built from supplied models), additional steps are
required. For details on that process, refer to Chapter 4, Updating User-Defined
Models.

Copying Designs to a Series IV Project
To translate several designs at once, they need to be in a Series IV project, if you have
a collection of designs to translate that are not currently part of a project directory
(for example, in a directory outside a project that serves as a library) you must copy
them to a project first. If you plan on translating designs individually, you can leave
them in their current location.
Copying Designs to a Series IV Project 3-1

Translating Design Libraries
Translating Subnetwork Design Files

Launch the translator and select the project (or design) you want to translate, as
described in “Importing Designs” on page 2-2.

Note Ignore the Custom Rules option for this step. You will select a rules file later
when you translate the top-level designs, if they reference user-defined models as
subnetworks.

If applicable, update any artwork macros at this time, as described in the section,
“Artwork Macros” on page E-1.

Once the subnetwork design (.dsn) files are translated, go to the next step, which
varies depending on the design type:

• Designs built from supplied models—move them to their new ADS library
location, as described in the next section.

• Designs built from user-defined models—update models as described in
Chapter 4, Updating User-Defined Models, and return to this point in the
process.
3-2 Copying Designs to a Series IV Project

Relocating Designs for Site-Wide Use
Once all designs involved have been translated, you can move the designs into ADS
library locations as follows:

Move the design files (.dsn) to

$HPEESOF_DIR/custom/circuit/symbols

Move the AEL files (.ael) to

$HPEESOF_DIR/custom/circuit/ael

Set the variable SITE_AEL to include the search path for the .ael files (the /symbols
directory will be searched automatically for .dsn files). Example:

SITE_AEL = $HPEESOF_DIR/custom/circuit/ael/

Set this variable in the file $HPEESOF_DIR/custom/config/de_sim.cfg.

For additional information on the settings used in Series IV vs. ADS, as well as
settings for a user-level library, see Figure 3-1.

Translating the Top-Level Designs
Launch the translator and select the project (or design) you want to translate, as
described in “Importing Designs” on page 2-2.

If your library designs contain user-defined models, you must also select the custom
rules file that maps your Series IV user-defined models to ADS user-defined models.
For details, refer to Appendix C, Translator Customization.
Relocating Designs for Site-Wide Use 3-3

Translating Design Libraries
Figure 3-1 shows typical/recommended library locations and the environment
variables that must be modified accordingly. The figure shows settings for both user
and site-wide libraries.

Figure 3-1. Library Settings in Series IV versus ADS
3-4 Translating the Top-Level Designs

Chapter 4: Updating User-Defined Models
A tool was added to ADS 1.0 to facilitate the creation of user-defined models.
However, updating Series IV models for use with that tool requires steps that are not
documented here. This process will be documented at a later date and published on
the web. The procedure described here uses the translator to update your AEL, but
then relies on compiling and linking from the command line (as you did in Series IV).

The example provided here uses actual files from the $EESOF_DIR/lib/libra/senior
directory to describe the steps required to update your user-defined models from
Series IV to ADS; substitute your filenames for the files referred to in the example
that are taken from the aforementioned directory. The basic process consists of the
following steps:

• Create a custom rules file mapping the Series IV design names to ADS design
names

• Translate the project containing the symbol (.dsn) and .ael files to a new ADS
project

• Modify the ADS user.mak file and compile

Figure 4-1 depicts the steps involved in this process, using the aforementioned files.

Note If your C-code contains calls to built-in models, additional steps are required.
This process will be documented at a later date and published on the web.
4-1

Updating User-Defined Models
Figure 4-1. Example updating Series IV factory-supplied user-defined models to ADS

To update Series IV models to ADS, do the following:
4-2

Note This procedure is written based on UNIX syntax; for PC differences, refer
to the ADS User-defined Models manual.

1. If the symbol (.dsn) files are not in a Series IV project directory, copy them to a
Series IV project networks directory (from which you will translate). For
example, /my_Series_IV_designs/u2pa_old_prj.

2. Create a custom rules file to map the Series IV design names to ADS design
names. In this example, the file looks like this:

U2PA|U2PA| | | | |FALSE| |
U2PB|U2PB| | | | |FALSE| |
U2PC|U2PC| | | | |FALSE| |

For details on creating a custom rules file, refer to Appendix C, Translator
Customization.

3. Launch the translator and specify old and new projects as described in Chapter
2, Importing and Simulating.

4. Click Custom Rules . In the dialog box that appears, select the file you created,
click Add , and click Build Custom Database .

Note The building process takes time to complete; a message will be displayed
upon completion.

5. When it is done building, select the Use Custom Database option and click OK.
The translation begins.

6. Copy your C-code file, userindx.c file (the one that you modified originally to
build the libra.bin executable), and header file to the networks directory of the
new ADS project.

Note If you no longer have your userindx.c file, you must recreate it (see
template in $HPEESOF_DIR/modelbuilder/lib). In this example, we are using
userex.c, userindx.c, userxlat.h. from the Series IV senior directory.

7. Copy the following list of files from $HPEESOF_DIR/modelbuilder/lib to the
networks directory of the new ADS project:
4-3

Updating User-Defined Models
cui_indx.c

hpeesofdebug.mak

modelbuilder.mak

user.mak

userdefs.h

8. Due to the error in the userdefs.h file noted above, you need to open the file in a
text editor and make the changes shown below.

Replace these lines:

extern double get_funit (IN void *eeElemInst);
extern double get_runit (IN void *eeElemInst);
extern double get_gunit (IN void *eeElemInst);
extern double get_lunit (IN void *eeElemInst);
extern double get_cunit (IN void *eeElemInst);
extern double get_lenunit (IN void *eeElemInst);
extern double get_tunit (IN void *eeElemInst);
extern double get_angunit (IN void *eeElemInst);
extern double get_curunit (IN void *eeElemInst);
extern double get_volunit (IN void *eeElemInst);
extern double get_watt (IN void *eeElemInst, IN double power);

With these lines:

#define get_funit(eeElemInst) 1.0
#define get_runit(eeElemInst) 1.0
#define get_gunit(eeElemInst) 1.0
#define get_lunit(eeElemInst) 1.0
#define get_cunit(eeElemInst) 1.0
#define get_lenunit(eeElemInst) 1.0
#define get_tunit(eeElemInst) 1.0
#define get_angunit(eeElemInst) 1.0
#define get_curunit(eeElemInst) 1.0
#define get_volunit(eeElemInst) 1.0
#define get_watt(eeElemInst, power) (power)
4-4

Note In Series IV these declarations returned multipliers to convert
parameter data to SI units. ADS uses scale factors on individual parameters,
thus these declarations are obsolete. Replacing the lines as shown returns
unity. When you translate your .ael files, scale factors are added to individual
parameters based on the unitCode in the create_parm function and the settings
of the UNITS item in the Defaults Design you select when translating.

9. Using any text editor, modify the user.mak file to identify your C-code file. In
this example, this means setting the line USER_C_SRCS to point to the file
userex.c, as shown next.

USER_C_SRCS = userex.c

Save the file.

10. Compile from the command line by typing

hpeesofmake -f hpeesofdebug.mak <target >

where target is one of the following (if no target is specified, the process defaults
to the compile_and_link target):

This step assumes you have a path set for the C-compiler.

Note The C-code and header files, and the files used for compiling and linking,
do not need to reside in the networks directory with the symbol (.dsn) and .ael
files (as was done in this example). These files can be in any directory you
choose as long as the affected projects have a soft link to the new simulator
executable (hpeesofsim) created via the compiling process.

compile_only compile only the active model

link_only link without compiling anything

compile_and_link compile the active file and link everything

update_only compile the active and any out-of-date files

update_and_link compile the active and any out-of-date files and then link
4-5

Updating User-Defined Models
4-6

Chapter 5: Translation Example
This example shows you how to translate a simple side-coupled filter from Series IV
to ADS. The project used is from the following Series IV examples directory:

$EESOF_DIR/examples/circuits/applications/passive/layout_prj

where $EESOF_DIR represents your complete installation path.

To translate this project:

1. Start the translator.

• UNIX—At the prompt type siv2ads

• PC—From the Start menu, choose Programs > Advanced Design System 2001
> ADS Tools > Series IV Import

2. When the Series IV to ADS Import dialog box appears, from the File Type
drop-down list, select Series IV Project .

3. Use the Browse button to locate the Source Project,
$EESOF_DIR/examples/circuits/applications/passive/layout_prj .

4. Accept the proposed Defaults Design.

5. In the ADS Project Name field, accept the default project name (same as the
Series IV name) or enter a new project name.

6. Use the Browse button to adjust the path or type a directory name for the new
project.
5-1

Translation Example
7. Click Import . The Status window appears, reporting the progress.

A log file (me_proj.log) is created in the new project directory during the
translation process. It contains detailed information on component name and
parameter changes made to the translated designs. More detailed component
information can be found in the me_err.log file in the same project directory.

Once the translation process is complete, you are ready to open the design in the
Advanced Design System and simulate.

To simulate a translated design:

1. Launch ADS and open the new project containing the translated designs.
5-2

Hint Choose View > Design Hierarchies to see the hierarchical organization of
the translated designs.

2. Open the cmstpfil_tb design.

3. Choose Simulate > Simulate . When the simulation is complete, choose Window >
New Data Display .

4. Insert a rectangular plot and display S(2,1) in dB.
5-3

Translation Example
To view the network schematic and layout:

1. From the simulation design (cmstpfil_tb), push into cmstpfil.

2. Choose Window > Layout to display the cmstpfil layout.
5-4

Appendix A: Series IV Items Not Translated
These tables list various types of Series IV items that are not translated because no
equivalent exists in ADS. All components not listed here are translated to ADS
components or otherwise incorporated in the translated designs. The Notes column
provides information about the changes in ADS. The file that controls how Series IV
components are mapped to ADS components is $HPEES0F_DIR/config/s4toads.rul.

Schematic Items

Library Group Exceptions Notes

Component and Ideal
Elements

OPEN
DSLTUNE2

No ADS equivalents for these items

Data File Elements NWAS1P
NWAS2P

The instrument server provides similar
functionality. Refer to the manual, Using
Instruments with ADS.

Measurement-related
Elements

TP

OSCTEST

The TP is translated as a named node. The TP
instance name is used as the node name for the
node to which the TP was connected.

Because OSCTEST is a two-terminal device in
ADS, components connected to pin 3 and 4 are
not connected.

Microstrip Elements EMPORT Obsolete. Formerly for use with designs
exported to Sonnet.

Test Items

Library Group Exceptions Notes

Optimization/DOE/Yield
Controls

DOE
MEAS_HIST

No ADS equivalents for these items

Noise Measurements INOISEQ
VNOISEQ

No ADS equivalents for these items

Nonlinear Measurements OSCAMNZ
OSCNSPEC
OSCPHNZ

No ADS equivalents for these items
A-1

Series IV Items Not Translated
Simulation Controls CABSTOL
CONTOURS
GMIN
HFLIST
IDMAX
INITNH
IRRANGE
MAXTRTOT
NOISE2P
OSCDAMP
OSCTOL

ADS uses different simulators with
different controls

Output Files Series IV .s2p files can be read by
ADS. With regard to other Series IV
output files, the ADS dataset provides
alternative functions.

Vendor Components

Manufacturer Part Notes

Motorola pb60_mot_MRF9511_eebjt2 Translates as an obsolete part. Replace it with
one of the following vendor parts:
pb_mot_MRF9511L_19921101
or
pb_mot_MRF951_19911008

Note: Only parts with the *60* designation (from Series IV 6.x) are translated; parts with a *40* or *50*
designation (from Series IV 4.0, 5.0) are not translated.

Miscellaneous Items

Series IV Item Notes

OmniSys components These components are not translated, but they will be represented in
the translated design as deactivated components. They will appear
as red boxes labeled with the component name. Delete each of
these components and replace them with the current ADS equivalent
component through the Component Library.

Momentum Radiation Pattern
definitions

Recalculate in ADS using Post Processing > Radiation Pattern from
the Momentum menu. You will now have access to 3D visualization.

Test Items (continued)

Library Group Exceptions Notes
A-2

Momentum substrate database Substrate must be recalculated in ADS

User-defined components Refer to the section, Chapter 4, Updating User-Defined
Models. *

Data display files (.gra) Create new data displays in ADS after simulating. For details, refer to
the Data Display manual.

* Designs that reference user-defined models cannot be translated until the user-defined models have
been updated to ADS models (or linked/compiled with the ADS simulator).

Miscellaneous Items (continued)

Series IV Item Notes
A-3

Series IV Items Not Translated
A-4

Appendix B: Nonlinear Model and
Component Changes from Series IV to ADS
This appendix describes the basic differences between the nonlinear device models
supplied in Series IV and their equivalents in ADS. The final table in the appendix
shows the differences in the equation-based nonlinear components.

The affected nonlinear device models are:

• “PN-Junction Diode Model” on page B-2

• “Bipolar Transistor Model” on page B-3

• “EEsof Bipolar Transistor Model” on page B-4

• “Junction FET Model” on page B-5

• “MOSFET Models (Levels 1, 2, and 3)” on page B-6

• “Curtice-Quadratic GaAsFET Model” on page B-8

• “Advanced Curtice-Quadratic GaAsFET Model” on page B-11

• “Curtice-Cubic GaAsFET Model” on page B-12

• “Statz (Raytheon) GaAsFET Model” on page B-15

• “TriQuint Scalable Nonlinear GaAsFET Model” on page B-18

These tables list the ADS equivalents for the Series IV model/device parameters and
show how to achieve similar modeling effects. For example, when using the
Curtice-Quadratic GaAsFET Model (Curtice2_Model) in ADS 2001, you need to
assign a non-zero value to Cgs and set Gscap = 2 to achieve the same modeling effects
you did in Series IV when assigning a non-zero value to CGSO. Both of these model
the gate-source junction capacitance with a diode junction capacitance model.

The affected equation-based nonlinear components (in Table B-11) are:

• NonlinCCVS

• NonlinVCVS
B-1

Nonlinear Model and Component Changes from Series IV to ADS
PN-Junction Diode Model
Table B-1 describes the differences between the Series IV PN-Junction Diode Model
(DIODEM) and its ADS equivalent (Diode_Model)

Table B-1. PN-Junction Diode Model (Diode_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

None Modeled by
IDMAX

Imax=1000 Explosion current beyond which the diode junction current
in the device is linearized

Same as Series IV’s IDMAX in a Simulation Control item.
Default value for Imax is 1.0A.
Default value for IDMAX is 1000.

None AllParams Instance Name of Data Access Component

For accessing file-based model parameter values

None Not modeled wBv
wPmax

Parameters for specifying the maximum voltage and
power allowed for the device

In a transient simulation, if OverloadAlert=yes (in the Tran
component), a warning will be issued for each device
exceeding these values at each time point.

In a DC simulation, if GiveAllWarnings=yes (in the Options
component), a warning will be issued for each device
exceeding these values at the DC operating point.
B-2 PN-Junction Diode Model

Bipolar Transistor Model
Table B-2 describes the differences between the Series IV Bipolar Transistor Model
(BJTM) and its ADS equivalent (BJT_Model).

Table B-2. Bipolar Transistor Model (BJT_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

None Modeled by
IDMAX

Imax=1000 Explosion current beyond which the p-n junction currents
in the device are linearized

Same as Series IV’s IDMAX in a Simulation Control item.
Default value for Imax is 1.0A.
Default value for IDMAX is 1000A.

None † Approxqb =
yes

Use approximation for Qb vs. early voltage

None † Lateral = no Vertical substrate geometry

If set to Yes, the substrate junction is connected to the
internal base and not the collector as in the vertical
device

None † RbModel =
Libra

Select Libra (Spice) base resistance equation

The default is MDS, which uses MDS base resistance
equation

None Not modeled wVsubfwd
wBvsub
wBvbe
wBvbc
wVbcfwd
wIbmax
wIcmax
wPmax

Parameters for specifying the maximum voltages,
currents, and power allowed for the device

In a transient simulation, if OverloadAlert=yes (in the Tran
component), a warning will be issued for each device
exceeding these values at each time point.

In a DC simulation, if GiveAllWarnings=yes (in the
Options component), a warning will be issued for each
device exceeding these values at the DC operating point.

None AllParams Instance Name of Data Access Component

For accessing file-based model parameter values

† Use the value shown in the ADS Model Parameter column to achieve the same results as in
Series IV (where this was modeled implicitly).
Bipolar Transistor Model B-3

Nonlinear Model and Component Changes from Series IV to ADS
EEsof Bipolar Transistor Model
Table B-3 describes the differences between the Series IV EEsof Bipolar Transistor
Model (EEBJT2) and its ADS equivalent (EE_BJT2_Model).

Table B-3. EEsof Bipolar Transistor Model (EE_BJT2_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

LB Base inductance None Not modeled in ADS

LC Collector inductance None Not modeled in ADS

LE Emitter inductance None Not modeled in ADS

CXBE External base-emitter
fringing capacitance

None Not modeled in ADS

CXBC External base-
collector fringing
capacitance

None Not modeled in ADS

CXCE External collector-
emitter fringing
capacitance

None Not modeled in ADS

None Not modeled wVsubfwd
wBvsub
wBvbe
wBvbc
wVbcfwd
wIbmax
wIcmax
wPmax

Parameters for specifying the maximum
voltages, currents, and power allowed for the
device

In a transient simulation, if OverloadAlert=yes
(in the Tran component), a warning will be
issued for each device exceeding these values
at each time point.

In a DC simulation, if GiveAllWarnings=yes (in
the Options component), a warning will be
issued for each device exceeding these values
at the DC operating point.
B-4 EEsof Bipolar Transistor Model

Junction FET Model
Table B-4 describes the differences between the Series IV Junction FET Model
(JFETM) and its ADS equivalent (JFET_Model)

None AllParams Instance Name of Data Access Component

For accessing file-based model parameter
values

Device
Parameter

Device
Parameter

None Area = 1.0 Scaling factor. Default value is 1.0

The model is not intended for scaling with Area,
however, ADS will scale if Area is set to anything
other than 1.0. Be sure not to change the default
value of 1.0.

Table B-4. Junction FET Model (JFET_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

None Modeled by
IDMAX

Imax=1000 Explosion current beyond which the p-n junction currents
in the device are linearized

Same as Series IV’s IDMAX in a Simulation Control item.
Default value for Imax is 1.6A.
Default value for IDMAX is 1000A.

Table B-3. EEsof Bipolar Transistor Model (EE_BJT2_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
Junction FET Model B-5

Nonlinear Model and Component Changes from Series IV to ADS
MOSFET Models (Levels 1, 2, and 3)
Table B-5 describes the differences between the Series IV MOSFET Models
(MOSLVL1, MOSLVL2, MOSLVL3) and their ADS equivalents (LEVEL1_Model,
LEVEL2_Model, LEVEL3_Model).

None AllParams Instance Name of Data Access Component

For accessing file-based model parameter values

None Not modeled wBvgs
wBvgd
wBvds
wIdsmax
wPmax

Parameters for specifying the maximum voltages,
currents, and power allowed for the device

In a transient simulation, if OverloadAlert=yes (in the Tran
component), a warning will be issued for each device
exceeding these values at each time point.

In a DC simulation, if GiveAllWarnings=yes (in the
Options component), a warning will be issued for each
device exceeding these values at the DC operating point.

Table B-5. MOSFET Models (LEVEL1_Model, LEVEL2_Model, LEVEL3_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

None Modeled by
IDMAX

Imax=1000 Explosion current beyond which the p-n junction currents
in the device are linearized

Same as Series IV’s IDMAX in a Simulation Control item.
Default value for Imax is 1.6A.
Default value for IDMAX is 1000A.

None AllParams Instance Name of Data Access Component

For accessing file-based model parameter values

Table B-4. Junction FET Model (JFET_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
B-6 MOSFET Models (Levels 1, 2, and 3)

None Not modeled

wVsubfwd
wBvsub
wBvg
wBvds
wIdsmax

Parameters for specifying the maximum voltages,
currents, and power allowed for the device

Substrate junction forward bias
Substrate junction reverse breakdown
Gate oxide breakdown voltage
Drain-source breakdown voltage
Maximum drain-source current

In a transient simulation, if OverloadAlert=yes (in the Tran
component), a warning will be issued for each device
exceeding these values at each time point.

In a DC simulation, if GiveAllWarnings=yes (in the
Options component), a warning will be issued for each
device exceeding these values at the DC operating point.

None † Capmod=3 Capacitance model selector

To select the capacitance model used in Series IV
(charge conserving first-order MOS charge model), set
Capmod to 3.
Default value is 1 (Meyer capacitance model).

† Use the value shown in the ADS Model Parameter column to achieve the same results as in
Series IV (where this was modeled implicitly).

Table B-5. MOSFET Models (LEVEL1_Model, LEVEL2_Model,

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
MOSFET Models (Levels 1, 2, and 3) B-7

Nonlinear Model and Component Changes from Series IV to ADS
Curtice-Quadratic GaAsFET Model
Table B-6 describes the differences between the Series IV Curtice-Quadratic
GaAsFET Model (CURTICE2) and its ADS equivalent (Curtice2_Model)

Table B-6. Curtice-Quadratic GaAsFET Model (Curtice2_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

CGS ≠ 0 Gate-source capacitance Cgs ≠ 0 and
Gscap = 1

Same as Series IV

Linear model

CGD ≠ 0 Gate-drain capacitance Cgd ≠ 0 and
Gdcap = 1

Same as Series IV

Linear model

CGSO ≠ 0
and
CGS = 0

Zero-bias gate-source
junction capacitance

Cgs ≠ 0 and
Gscap = 2

Same as Series IV

Diode junction capacitance model

CGDO ≠ 0
and
CGD = 0

Zero-bias gate-drain
junction capacitance

Cgd ≠ 0 and
Gdcap = 2

Same as Series IV

Diode junction capacitance model

RF ≠ 0 Gate-source linear
forward conduction

Rf ≠ 0 and
Gsfwd = 1

Same as Series IV

Linear model

Not modeled Rf ≠ 0 and
Gdfwd = 1

Gate-drain linear forward conduction

Linear model

RF = 0 Gate-source diode
conduction

Gsfwd = 2 Same as Series IV

Gate-source diode
reverse breakdown if
VBR ≠ 0

Gsrev = 2
with Vbr, Ir,
and Vjr

Gate-source diode reverse breakdown

Series IV:

Igs = −IS • exp

ADS 1.5:

Igs = −Ir •

where Vb = Vbr + R2 • Ids

Vsg VBR–
N Vt•

Vsg Vb–
Vjr

------------------------ 1–exp 
 
B-8 Curtice-Quadratic GaAsFET Model

R1 ≠ 0
VBR > 0

Gate-drain reverse linear
breakdown

R1 ≠ 0 and
Gdrev = 1

Same as Series IV

Linear model

None Not modeled R1 ≠ 0 and
Gsrev = 1

Gate-source reverse linear breakdown

Linear model

R1 = 0 Gate-drain diode
conduction

Gdfwd = 2 Same as Series IV

Gate-drain diode reverse
breakdown if VBR ≠ 0

Gdrev = 2
with Vbr, Ir,
and Vjr

Gate-drain diode reverse breakdown

Series IV:

Igd = −IS • exp

ADS 1.5:

Igd = −Ir •

where Vb = Vbr + R2 • Ids

None Not modeled Rgd Gate-drain resistance

None Not modeled Ld Drain inductance

Rd cannot equal zero

None Not modeled Lg Gate inductance

Rg cannot equal zero

None Not modeled Ls Source inductance

Rs cannot equal zero

None Modeled by IDMAX Imax = 1000 Explosion current beyond which the diode
junction current in the device is linearized

Same as Series IV’s IDMAX in a Simulation
Control itemL.
Default value for Imax is 1.6A.
Default value for IDMAX is 1000A.

Table B-6. Curtice-Quadratic GaAsFET Model (Curtice2_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

Vdg VBR–
N Vt•

Vdg Vb–
Vjr

------------------------- 1–exp 
 
Curtice-Quadratic GaAsFET Model B-9

Nonlinear Model and Component Changes from Series IV to ADS
None Not modeled Idstc ≠ 0
Betatce = 0

Use MDS temperature scaling equation for ids

ids scaling factor is
1 + Idstc • (Temp − Tnom)

KF, AF, FFE For noise model R, P, C, Fnc Same as Series IV

The Series IV noise model has been replaced
by the MDS noise model. Refer to the manual
for details.

None † Taumdl = yes Model ids transit time delay

Set to Yes to use Series IV equations;
Set to No to use MDS equations.
This parameter affects transient analysis only.

None Not modeled wVgfwd
wBvgs
wBvgd
wBvds
wIdsmax
wPmax

Parameters for specifying the maximum
voltages, currents, and power allowed for the
device

In a transient simulation, if OverloadAlert=yes
(in the Tran component), a warning will be
issued for each device exceeding these values
at each time point.

In a DC simulation, if GiveAllWarnings=yes (in
the Options component), a warning will be
issued for each device exceeding these values
at the DC operating point.

AllParams Instance Name of Data Access Component

For accessing file-based model parameter
values

† Use the value shown in the ADS Model Parameter column to achieve the same results as in
Series IV (where this was modeled implicitly).

Table B-6. Curtice-Quadratic GaAsFET Model (Curtice2_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
B-10 Curtice-Quadratic GaAsFET Model

Advanced Curtice-Quadratic GaAsFET Model
Table B-7 describes the differences between the Series IV Curtice-Quadratic
GaAsFET Model (CURTICE2) and the ADS advanced model,
Advanced_Curtice2_Model. (This advanced model was not available in Series IV). For
differences in parameters not shown here, refer to the “Curtice-Quadratic GaAsFET
Model” on page B-8.

Table B-7. Advanced Curtice-Quadratic GaAsFET Model
(Advanced_Curtice2_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

None Not modeled Ucrit Critical field for mobility degradation†

None Not modeled Vgexp Vgs − Vto exponent†

None Not modeled Gamds Effective pinch-off combined with Vds†

†These parameters modify Vto, Beta, and

(Vgs − Vto)2 in Curtice-Quadratic GaAsFET’s Ids equation:

VtoNEW = Vto + Gamds • Vds

BetaNEW =

(Vgs − Vto)2 ← (Vgs - VtoNEW)Vgexp

When Ucrit ≠ 0, the above equations are in use and the
temperature coefficients Vtotc and Betatc are disabled.

RIN Channel
resistance

Rgs Same as Series IV

Beta
1 Vgs VtoNEW–() Ucrit•+()

Advanced Curtice-Quadratic GaAsFET Model B-11

Nonlinear Model and Component Changes from Series IV to ADS
Curtice-Cubic GaAsFET Model
Table B-8 describes the differences between the Series IV Curtice-Cubic GaAsFET
Model (CURTICE3) and its ADS equivalent (Curtice3_Model)

Table B-8. Curtice-Cubic GaAsFET Model (Curtice3_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

BETA Coefficient for
pinch-off change
with respect to Vds

Beta2 Same as Series IV

VBO Gate junction
reverse bias
breakdown

Vbr Same as Series IV

CGS ≠ 0 Gate-source
capacitance

Cgs ≠ 0 and
Gscap = 1

Same as Series IV

Linear model

CGD ≠ 0 Gate-drain
capacitance

Cgd ≠ 0 and
Gdcap = 1

Same as Series IV

Linear model

CGSO ≠ 0
and
CGS = 0

Zero-bias
gate-source
junction
capacitance

Cgs ≠ 0 and
Gscap = 2

Same as Series IV

Diode junction capacitance model

CGDO ≠ 0
and
CGD = 0

Zero-bias
gate-drain junction
capacitance

Cgd ≠ 0 and
Gdcap = 2

Same as Series IV

Diode junction capacitance model

RF ≠ 0 Gate-source linear
forward conduction

Rf ≠ 0 and
Gsfwd = 1

Same as Series IV

Linear model

Not modeled Rf ≠ 0 and
Gdfwd = 1

Gate-drain linear forward conduction

Linear model
B-12 Curtice-Cubic GaAsFET Model

RF = 0 Gate-source diode
conduction

Gsfwd = 2 Same as Series IV

Not modeled Gsrev = 2
with Vbr, Ir,
and Vjr

Gate-source diode reverse breakdown

Igs = −Ir •

where Vb = Vbr + R2 • Ids

R1 ≠ 0
VBO > 0

Gate-drain reverse
linear breakdown

R1 ≠ 0 and
Gdrev = 1

Same as Series IV

Linear model

Not modeled R1 ≠ 0 and
Gsrev = 1

Gate-source reverse linear breakdown

Linear model

None Not modeled Gdfwd = 2 Gate-drain diode conduction

Gdrev = 2
with Vbr, Ir,
and Vjr

Gate-drain diode reverse breakdown

Igd = −Ir •

where Vb = Vbr + R2 • Ids

None Not modeled Rds0 ≠ 0 dc conductance at Vgs = 0

Add to Ids:

CRF = 0
RDS ≠ 0

Additional output
resistance for RF
operation

Crf = 0
Rds ≠ 0

Rds − Crf is not modeled

In Series IV, add to Ids:

where VdsDC is Vds at DC bias solution after DC
analysis

None Not modeled A5 Time delay proportionality constant for Vds

delay = Tau + A5 • Vds

None Not modeled Rgd Gate-drain resistance

Table B-8. Curtice-Cubic GaAsFET Model (Curtice3_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

Vsg Vb–
Vjr

------------------------ 1–exp 
 

Vdg Vb–
Vjr

------------------------- 1–exp 
 

h Gamma Vds•()an Vds Vdsdc–(•
Rds0

--

Vds VdsDC–()
Rds

Curtice-Cubic GaAsFET Model B-13

Nonlinear Model and Component Changes from Series IV to ADS
None Not modeled Ld Drain inductance

Rd cannot equal zero

None Not modeled Lg Gate inductance

Rg cannot equal zero

None Not modeled Ls Source inductance

Rs cannot equal zero

None Modeled by IDMAX Imax = 1000 Explosion current beyond which the diode junction
current in the device is linearized

Same as Series IV’s IDMAX in a Simulation Control
item.
Default value for Imax is 1.6A
Default value for IDMAX is 1000A

None Not modeled Idstc ≠ 0
Betatce = 0

Use MDS temperature scaling equation for ids

ids scaling factor is
1 + Idstc • (Temp − Tnom)

KF, AF, FFE For noise model R, P, C, Fnc Same as Series IV

The Series IV noise model has been replaced by the
MDS noise model. Refer to the manual for details.

None † Taumdl =
yes

Model ids transit time delay

Set to Yes to use Series IV equations;
Set to No to use MDS equations.
This parameter affects transient analysis only.

Table B-8. Curtice-Cubic GaAsFET Model (Curtice3_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
B-14 Curtice-Cubic GaAsFET Model

Statz (Raytheon) GaAsFET Model
Table B-9 describes the differences between the Series IV Statz (Raytheon) GaAsFET
Model (STATZ) and its ADS equivalent (Statz_Model)

None Not modeled wVgfwd
wBvgs
wBvgd
wBvds
wIdsmax
wPmax

Parameters for specifying the maximum voltages,
currents, and power allowed for the device

In a transient simulation, if OverloadAlert=yes (in the
Tran component), a warning will be issued for each
device exceeding these values at each time point.

In a DC simulation, if GiveAllWarnings=yes (in the
Options component), a warning will be issued for
each device exceeding these values at the DC
operating point.

AllParams Instance Name of Data Access Component

For accessing file-based model parameter values

† Use the value shown in the ADS Model Parameter column to achieve the same results as in
Series IV (where this was modeled implicitly).

Table B-9. Statz (Raytheon) GaAsFET Model (Statz_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

THETA Controls Ids − Vgs
characteristic
transition from
quadratic to linear
behavior

B Same as Series IV

CGS ≠ 0 Gate-source
capacitance

Cgs ≠ 0 and
Gscap = 1

Same as Series IV

Linear model

Table B-8. Curtice-Cubic GaAsFET Model (Curtice3_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
Statz (Raytheon) GaAsFET Model B-15

Nonlinear Model and Component Changes from Series IV to ADS
CGD ≠ 0 Gate-drain
capacitance

Cgd ≠ 0 and
Gdcap = 1

Same as Series IV

Linear model

CGSO ≠ 0
and
CGS = 0

Zero bias
gate-source
junction
capacitance

Cgs ≠ 0 and
Gscap = 6

Same as Series IV†

CGDO ≠ 0
and
CGD = 0

Zero bias
gate-drain junction
capacitance

Cgd ≠ 0 and
Gdcap = 6

Same as Series IV†

†Currently, none of the available capacitance models in ADS 1.5
are fully compatible. Gscap = Gdcap = 6 will use the Statz
charge-based model. The charge equation is the same as in
Series IV, however, the partitions of the gate charge to gate-source
and gate-drain are different.

None Vmax Maximum junction voltage before capacitance
limiting

Series IV: Internal Vmax =FC • VBI
ADS: Internal Vmax =Min(FC • VBI, Vmax)

None Not modeled Tqm Junction capacitance temperature coefficient

CTEMP = C • (1 + Tqm • (0.004 •
(Temp − Tnom) + (1 − VbiTEMP/Vbi)))
where VbiTEMP is the temperature adjusted Vbi,
CTEMP is either CgsTEMP or CgdTEMP, and C is either
Cgs or Cgd

None Gate-source diode
conduction

Gsfwd = 2 Same as Series IV

In Series IV, this is automatically computed

None Gate-drain diode
conduction

Gdfwd = 2 Same as Series IV

In Series IV, this is automatically computed

Table B-9. Statz (Raytheon) GaAsFET Model (Statz_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
B-16 Statz (Raytheon) GaAsFET Model

VBR ≠ 0 Gate-source
reverse
breakdown

Gsrev = 2
with Vbr, Ir,
Vjr

Same as Series IV

Series IV:

Igs = −IS • exp

ADS 1.5:

Igs = −Ir •

Gate-drain reverse
breakdown

Gdrev = 2
with Vbr, Ir,
Vjr

Same as Series IV

Series IV:

Igd = −IS • exp

ADS 1.5:

Igd = −Ir •

None Not modeled Rgd Gate-drain resistance

None Not modeled Ld Drain inductance

Rd cannot equal zero

None Not modeled Lg Gate inductance

Rg cannot equal zero

None Not modeled Ls Source inductance

Rs cannot equal zero

None Modeled by
IDMAX

Imax = 1000 Explosion current beyond which the diode junction
current in the device is linearized

Same as Series IV’s IDMAX in a Simulation Control
item.
Default value for Imax is 1.6A.
Default value for IDMAX is 1000A.

Table B-9. Statz (Raytheon) GaAsFET Model (Statz_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

Vsg VBR–
N Vt•

Vsg Vbr–
Vjr

--------------------------- 1–exp 
 

Vdg VBR–
N Vt•

Vdg Vbr–
Vjr

---------------------------- 1–exp 
 
Statz (Raytheon) GaAsFET Model B-17

Nonlinear Model and Component Changes from Series IV to ADS
TriQuint Scalable Nonlinear GaAsFET Model
Table B-10 describes the differences between the Series IV TriQuint Scalable
Nonlinear GaAsFET Model (EETOM1) and its ADS equivalent (TOM_Model). Note:

None Not modeled Idstc ≠ 0
Betatce = 0

Use MDS temperature scaling equation for ids

ids scaling factor is
1 + Idstc • (Temp − Tnom)

KF, AF, FFE For noise model R, P, C, Fnc Same as Series IV

The Series IV noise model has been replaced by the
MDS noise model. Refer to the manual for details.

None † Taumdl =
yes

Model ids transit time delay

Set to Yes to use Series IV equations;
Set to No to use MDS equations.
This parameter affects transient analysis only.

None Not modeled wVgfwd
wBvgs
wBvgd
wBvds
wIdsmax
wPmax

Parameters for specifying the maximum voltages,
currents, and power allowed for the device

In a transient simulation, if OverloadAlert=yes (in the
Tran component), a warning will be issued for each
device exceeding these values at each time point.

In a DC simulation, if GiveAllWarnings=yes (in the
Options component), a warning will be issued for
each device exceeding these values at the DC
operating point.

AllParams Instance Name of Data Access Component

For accessing file-based model parameter values

† Use the value shown in the ADS Model Parameter column to achieve the same results as in
Series IV (where this was modeled implicitly).

Table B-9. Statz (Raytheon) GaAsFET Model (Statz_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
B-18 TriQuint Scalable Nonlinear GaAsFET Model

The TOM and EETOM models of Series IV have been merged into one TOM model in
ADS 1.5.

Table B-10. TriQuint Scalable Nonlinear GaAsFET Model (TOM_Model)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description

GAMMADC DC drain pull
coefficient

Tqgamma Same as Series IV

GAMMA AC drain pull
coefficient

TqgammaAC Same as Series IV
(available in ADS)

DELTA Output feedback
coefficient

Tqdelta Same as Series IV

CGSO ≠ 0
and
CGS = 0

Zero-bias
gate-source
capacitance

Cgs ≠ 0 and
Gscap = 5

Same as Series IV

CGDO ≠ 0
and
CGD = 0

Zero-bias gate-drain
capacitance

Cgd ≠ 0 and
Gdcap = 5

Same as Series IV

RDB Dispersion source
output impedance

Rdb Same as Series IV

CBS Dispersion source
capacitance

Cbs Same as Series IV

None Use grading
coefficient parameter
M, no separate
parameter

Tqm Temperature coefficient for TriQuint junction
capacitance (default = 0.2)

In ADS:
Cgs(Temp) = Cgs[1 + Tqm • [4.0 • 10-4 •
(Temp − Tnom) + (1 − Vbi(Temp)/Vbi)]]

Cgd(Temp) = Cgd[1 + Tqm • [4.0 • 10-4 •
(Temp − Tnom) + (1 − Vbi(Temp)/Vbi)]]

None Vmax Maximum junction voltage before capacitance
limiting

In Series IV: Internal Vmax = FC • VBI
In ADS: Internal Vmax = Min(Fc • Vbi, Vmax)

None Not modeled Trg1 Linear temperature coefficient for Rg
TriQuint Scalable Nonlinear GaAsFET Model B-19

Nonlinear Model and Component Changes from Series IV to ADS
KF, AF, FFE For noise model R, P, C, Fnc Same as Series IV

The Series IV noise model has been replaced by
the MDS noise model. Refer to the manual for
details.

None † Taumdl = yes Model ids transit time delay

Set to Yes to use Series IV equations;
Set to No to use MDS equations.
This parameter affects transient analysis only.

None Not modeled wVgfwd
wBvgs
wBvgd
wBvds
wIdsmax
wPmax

Parameters for specifying the maximum voltages,
currents, and power allowed for the device

Comment:
In a transient simulation, if OverloadAlert=yes (in
the Tran component), a warning will be issued for
each device exceeding these values at each time
point.

In a DC simulation, if GiveAllWarnings=yes (in
the Options component), a warning will be issued
for each device exceeding these values at the DC
operating point.

AllParams Instance Name of Data Access Component

For accessing file-based model parameter values

Device
Parameter

Device
Parameter

UGW New unit gate width
(EETOM1)

W Same as Series IV

TOP Device operating
temperature in °C
(EETOM1)

Temp Same as Series IV

† Use the value shown in the ADS Model Parameter column to achieve the same results as in
Series IV (where this was modeled implicitly).

Table B-10. TriQuint Scalable Nonlinear GaAsFET Model (TOM_Model) (continued)

Series IV Advanced Design System 2001

Model
Parameter Description

Model
Parameter Description
B-20 TriQuint Scalable Nonlinear GaAsFET Model

Equation-Based Nonlinear Components
Table B-11 shows the minor differences between the Series IV equation-based
nonlinear components and their ADS equivalents.

Table B-11. Equation-Based Nonlinear Components

Series IV Advanced Design System 2001

Component Component Comment

NLCCVS NonlinCCVS The polarity of the output voltage source in ADS is
opposite of what it was in Series IV.

NLVCVS NonlinVCVS The polarity of the output voltage source in ADS is
opposite of what it was in Series IV.
Equation-Based Nonlinear Components B-21

Nonlinear Model and Component Changes from Series IV to ADS
B-22 Equation-Based Nonlinear Components

Appendix C: Translator Customization
The translation of components is accomplished using a database of rules that maps
Series IV components to ADS components parameter-by-parameter. Standard
components are mapped through the supplied rules file, s4toads.rul, but you need to
create a custom rules file for custom parts. When translating designs or projects, the
translator first looks for a custom rules database and then for the supplied rules
database. Custom translation rules take precedence over supplied rules.

Writing Custom Translation Rules
Rules files can be created using any text editor. An empty line or any line beginning
with the pound symbol (#) is ignored. Examples of rules used by the translator can be
found in the $HPEESOF_DIR/config/*.rul files. Translation rules use the following
syntax and should be on a single line of the rules file:

OldName|ADSName|ParmRule|DefRule|PinRule|NameRule|DelFlag|MappedParmRule|

Field Description

OldName Series IV component name

ADSName ADS component name

ParmRule Parameter mapping AEL function name (optional)

DefRule Component definition mapping rule (obsolete)

PinRule
SrcPinNum
SrcPinName
DestPinNum
DestPinName

Pin mapping rule list (optional)
Old pin number
Old pin name (obsolete)
Destination pin number
Destination pin name (obsolete)

NameRule Name mapping AEL function name (optional)

DelFlag Delete flag (TRUE or FALSE)

Note that when any of the above fields is not used (obsolete or optional) the
field separator "|" must still be included.

MappedParmRule
ADSParmName
ParmName
DataItemName
DataItemParmName
DataItemParmDefForm

Mapped parameter rule list (optional)
ADS parameter name
Series IV parameter name
Series IV Data Item Name
Series IV Data Item parameter
This parameter is no longer used
C-1

Translator Customization
Example:

XFER|Transformer| | | | |FALSE| |

In this example, a Series IV component named XFER is translated to an ADS
component named Transformer. All parameters that have the same name in
Series IV as they do in ADS are copied to the new component. A simple rule of this
form will translate most custom parts.

Example:

XFER| | | | | |TRUE| |

In this example (setting the Delete Flag to TRUE), the Series IV component will not
be translated. The status messages produced during translation will indicate that the
component is not translatable and has been removed from the design.

If the names of component parameters need to be changed during the translation,
you need to use the MappedParmRule field. The syntax for this field is:

ADSParmName,[@|&|%]ParmName,DataItemName,DataItemParmName,
DataItemParmDefForm,

Field, MappedParmRule Description

ADSParmName ADS Component Parameter Name

ParmName
@ - Followed by a default value of the parameter.
This allows a new ADS parameter to have a default
value rather than copying a value from the SIV
component
& - The parameter value of Series IV component will
be quoted as a string. This is normally needed in
ADS for items that are not numeric such as the name
of a substrate or a filename.
% - The case of the specified SIV parameter name is
not significant (e.g., Cond and COND refer to the
same parameter)

Series IV Component Parameter Name

DataItemName Series IV Data Item from which to retrieve the
named parameter

DataItemParmName Series IV Data Item Parameter from which to
retrieve the value

DataItemParmDefForm This parameter is no longer used.
C-2

Example:

GYR|Gyrator| | | |False|Ratio,R, , , ,;|

In this example, the rule copies the value from the old name (R) to the new name
(Ratio). The third through fifth parameters are not used.

Example:

MONOPOLE|AntLoad| | | | |FALSE|AntType,@MONOPOLE, , , ,;RatioLR,LR, , ,
,;Length,L, , , ,;|

In this example, a Series IV component called MONOPOLE is translated to a more
general ADS component named AntLoad. The parameter AntType is given a default
value of "MONOPOLE" by using the "@".

Retrieving Parameter Values from Series IV Data Items

Because ADS does not support the Series IV Data Item, you may want to copy a
parameter value of a Series IV Data Item to the appropriate ADS component
parameter using the DataItemName and DataItemParmName fields. For example,
you can retrieve the value of the TEMP parameter of the Series IV TEMP Data
Item—using these fields—and copy it to the ADS parameter Temp, for a given
component.

Example:

RES|R| | | |FALSE|Temp,TEMP,TEMP,TEMP, ;|

In this example, the Series IV component RES is translated to the ADS component R
and all parameters that have the same name are copied. The MappedParamRule says
to copy the value of the TEMP parameter of the Series IV TEMP Data Item to the
ADS parameter Temp (for this component).

Setting Parameter Values Using AEL Functions

The translator can invoke an AEL function during the translation. To use this
feature, you specify the name of an AEL function in the ParmRule field. This enables
you to extend the translation capabilities, such as computing numerical values from
other parameters.

Four pieces of information are combined as a list and sent to the AEL function, which
will return an updated parameter list to the translator. The parameter list sent to the
AEL function will already have parameter values for all parameters that have the
same name in the Series IV component that they have in the ADS component. It will
Writing Custom Translation Rules C-3

Translator Customization
also have any parameters copied that are specified by a MappedParmRule. The
translator will use the updated parameter list to modify the replaced instance.

Input Parameter:

list(list(sivParmList, /*Series component parameter list*/
adsParmList), /*ADS component parameter list*/
instH, /*New ADS instance handle*/
sivItemName) /*Series IV component Name*/

Output Parameter:

adsParmList - Updated ADS component parameter list

The syntax for sivParmList and adsParmList is shown next.

sivParmList =

or

adsParmList =

list(list(Name1, Form1, Value1, UnitString1, UnitCode1),
list(Name2, Form2, Value2, UnitString2, UnitCode2),
...
list(NameN, FormN, ValueN, UnitStringN, UnitCodeN))

where

Consider the following AEL function:

Name Name of parameter

Form Form of the current parameter

Value Value of the parameter (with unit string)

UnitString Unit string of the current parameter

UnitCode Unit code of the parameter
C-4 Writing Custom Translation Rules

defun merullib_SUBSTRATE ()
{
 decl newParmH, tmpStr, newParmName;
 decl oldParmList = car(car(arg_list()));
 decl newParmList = car(cdr(car(arg_list())));
 decl j, i = listlen(newParmList);
 decl rhsH;

 if (oldParmList != NULL)
 {
 for(j=0; j<i; j++)
 {
 tmpStr = "";
 newParmH = nth(j, newParmList);
 newParmName = car(newParmH);

 if (!strcmp("Cond", newParmName))
 {
 decl rhoH;
 //
 // get parameter RHO
 //
 tmpStr = merul_extract_parm(oldParmList, "RHO", NULL, NULL, NULL);

if(tmpStr)
 {
 rhoH = car(merul_plib_parse(tmpStr, nth(MERUL_PARM_UNIT_CODE,

newParmH)));
 //
 // construct parameter
 //
 if (rhoH || strlen (rhoH) !=0)
 {

 if (val (rhoH) != 0)
 tmpStr = identify_value(1.0E+50/val (rhoH));
 else
 tmpStr = identify_value(1.0E+50);
 }
 else
 tmpStr = identify_value(1.0E+50);
 }
 }
 else
 if (!strcmp("Mur", newParmName))
 {
 decl tmpParmList = meutil_get_dataitem_parmlist(TRUE, "PERM", FALSE);
 tmpStr = merul_extract_parm(tmpParmList, "MUR", NULL, NULL, NULL);
 }
 else
 if (!strcmp("TanD", newParmName))
 {
 decl tmpParmList = meutil_get_dataitem_parmlist(TRUE, "TAND", FALSE);
 tmpStr = merul_extract_parm(tmpParmList, "TAND", NULL, NULL, NULL);
 }
Writing Custom Translation Rules C-5

Translator Customization
This example illustrates most features of a typical ParmRule AEL function.

When this AEL function runs, all parameters with the same name in both the Series
IV and the ADS components, have already been copied to the ADS component. This
AEL function only needs to modify parameters that need special handling.

The following is a description of what occurs when the function runs:

• On the fourth and fifth lines, it gets the oldParmList and newParmList for the
Series IV and ADS components.

• The next line sets "i" to the length of the newParmList.

• On line 11 a "for" loop is started that loops through the parameters from the
newParmList.

• The variable "newParmName" is assigned the name of the next parameter of
the new component.

• A series of conditional "if" statements looks for specific parameter names and
does special handling for these parameters. Within the "if" statement that
selects "Cond" the function merul_extract_parm (line 23) is used to get the
value of the "RHO" parameter from the old component.

• The third and forth parameters of merul_extract_parm are DataItemName and
DataItemParmName, as described previously.

• The term "tmpStr" is a string containing the old parameter.

• The term rhoH is the numeric value of the parameter including applying the
unit associated with this parameter.

• The lines starting at line 30 compute a string value for tmpStr based on the
numeric value of the RHO parameter. Near the end of the function, if tmpStr
had a value, a newParmH is created for tmpStr and it is used to update the
parameter list for the new component.

 if(tmpStr)
 {
 newParmH = repla(newParmH, tmpStr, MERUL_PARM_VALUE);
 newParmList = repla(newParmList, newParmH, j);
 }
 }
 }
 return newParmList;
}
*/
C-6 Writing Custom Translation Rules

Mapping Component Pin Changes

If the pin connections of the old component and the new component are not the same,
you can create a PinRule to interchange the pin numbers using the following
sub-fields:

SrcPinNum,SrcPinName,DestPinNum,DestPinName,;

where

Note that when any of the above fields is not used (or is optional), the field separator,
a comma (,) must still be used. A semicolon (;) must be used at the end, and multiple
PinRules can be appended together to map several pins, with each PinRule being
separated by a semicolon (;).

Note If DestPinNum is specified but SrcPinNum is not, the DestPinNum of the new
instance will be grounded.

Example:

Neg1|Deembed1| | | , ,2, ,;| |FALSE| |

In this example, pin 2 of the ADS Deembed1 component would be grounded.

Example:

PCCROS|PCCROS| | |2, ,4, ,;3, ,2, ,;4, ,3, ,;| |FALSE| |

This example contain 3 PinRules. Series IV pin 2 is mapped to ADS pin 4, Series IV
pin 3 is mapped to ADS pin 2, and Series IV pin 4 maps to ADS pin 3.

SrcPinNum Old pin number (optional)

SrcPinName Old pin name (not used)

DestPinNum Destination pin number

DestPinName Destination pin name (not used)
Writing Custom Translation Rules C-7

Translator Customization
Mapping to a Component Based on Parameter Specifics

If you want to map a Series IV component to an ADS component based on a
parameter from the Series IV component, you can specify an AEL function in the
NameRule field.

Example:

defun merullib_name_P2D()
{
 decl oldParmList = car(car(arg_list()));
 if (listlen(oldParmList) == 1)
 {
 return "DataAccessComponent";
 }
 else
 {
 return "AmplifierP2D";
 }
}

This example looks at the number of parameters of the Series IV component. If there
is one parameter, the name "DataAccessComponent" is returned, otherwise
"AmplifierP2D" is returned.

Using a Customized Rules Files
To use custom rules, you need to create one or more rules files and place them in your
$HOME/hpeesof/config (UNIX) or %HOME%\hpeesof\config (PC) directory. These
files must end with the .rul suffix and must be compiled into a rules database file
(meruls_siv_custom.db).

To compile your custom rules file(s) do the following:

1. Launch the translator as described in “Importing Designs” on page 2-2.

2. Click Custom Rules and a dialog box appears. If any .rul files are found in the
local config directory, they will appear on the drop-down list.
C-8 Using a Customized Rules Files

3. Select the desired rules file from the drop-down list and click Add . Alternatively,
click Add All to merge all rules files into one custom database.

Hint To modify the entries in the list box, highlight an individual one and click
Remove . Click Remove All to clear the box and start over.

4. Once the list box contains the desired filename(s), click Build Custom Database .
The status panel at the bottom of the dialog box displays messages reporting
the progress. When the process is complete, a message that says “The rules
database has been successfully built” or something similar will appear.

5. Once the database has built successfully, you must select the option Use Custom
Database for it to be used for the upcoming translation.

6. Click OK and proceed with the translation.
Using a Customized Rules Files C-9

Translator Customization
Customizing Translator Variables
The variables listed in Table C-1 can be customized as shown to modify the default
behavior of the translator.

Table C-1. Series IV to ADS Translator Customization Variables

Variable/Description Valid Values

MIGRATION_MOVE_ANNOTATION

Controls the location of component annotation. TRUE causes annotation to be
drawn in its original Series IV location; FALSE allows ADS to draw the annotation
where it wants. (Default is TRUE)

Example: MIGRATION_MOVE_ANNOTATION=TRUE

TRUE or FALSE

MIGRATION_TESTBENCH_TEMPLATE

Controls the translation of test bench templates. TRUE means Series IV test bench
templates (convolution_template_tb.dsn, dcbias_template_tb.dsn, etc.) are
translated; FALSE means they will not be translated. (Default is FALSE)

MIGRATION_TESTBENCH_TEMPLATE=FALSE

TRUE or FALSE
C-10 Customizing Translator Variables

Appendix D: Batch Mode Translation
This section describes how to set up and perform SIV batch translation from the
command line.

Note Translating SIV designs from a command line requires knowledge of how to
set environment variables and work in a DOS window or UNIX shell. Therefore, this
task should only be attempted by advanced users.

hpeesofme Setup
Prior to use, the hpeesofme program must be properly configured.

Windows

1. Open an MS DOS shell.

2. Set the $HPEESOF_DIR environment variable to your ADS installation
directory. For example

set HPEESOF_DIR=<ADS_install_dir>

3. Set your PATH environment variable to include the $HPEESOF_DIR\bin
directory. For example

set path=C:\ADS2001\bin;%path%

4. Set the appropriate library path for your operating system. For example

set shlib_path=$shlib_path:$HPEESOF_DIR\lib\win

UNIX

1. Set your $HPEESOF_DIRenvironment variable to your ADS installation directory.
For example, if using the Korn shell enter

export HPEESOF_DIR=<ADS_install_dir>

2. Set your PATH environment variable to include the $HPEESOF_DIR/bin
directory. For example, if using the Korn shell enter

export PATH=$HPEESOF_DIR/bin:$PATH
D-1

Batch Mode Translation
3. Set the appropriate library path for your operating system. For HP-UX
operating systems (i.e. hpux10 or hpux11), enter the following:

SHLIB_PATH=$SHLIB_PATH:$HPEESOF_DIR/lib/hpux10

or

SHLIB_PATH=$SHLIB_PATH:$HPEESOF_DIR/lib/hpux11

For SUN operating systems (i.e. sun4 or sun55), enter

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HPEESOF_DIR/lib/sun4

or

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HPEESOF_DIR/lib/sun55

For AIX operating systems (i.e.aix4), enter the following:

LIBPATH=$LIBPATH:$HPEESOF_DIR/lib/aix4

Executing hpeesofme
The SIV translator is started using the following syntax:

hpeesofemx hpeesofme -me -nw -mep <projectDef> -mec <customRules> -env
<envFileName>

where:

-me Forces the translation to start after bootup.
Required

-nw Invokes the program in the non-visual
mode. Required

-mep <projectDef> Specifies the project to migrate. Required

-mec <customRules> Specifies the custom rules database (with
path and extension). Optional

-env <envFileName> Specifies the environment file to be used
(usually de_sim). Required
D-2 Executing hpeesofme

Additional Option Information

-mep

This option has the following syntax:

“SrcPath|DefaultDsnName|0|DestPath|UnitPref”

where:

Example
The following is an example of a Perl script capable of running multiple translations
in batch mode:

a script to run the Series IV translator from command line
#
@projects = (“proj1”, “proj2”);
$sivdir = “c:/users/toto/ExamplesSIV/tests”;
$adsdir = “c:/users/toto/adsmigration/sivmigrated”;
$customRules = “c:/users/toto/hpeesof/config/meruls_s4_custom.db”;

foreach (@projects)
{
print “\n\n********* translate $_ ***********\n\n”;
$sivfile = “$sivdir/$_”.’_prj’;
$adsproj = “$adsdir/$_”.’_prj’;
system(“hpeesofemx hpeesofme -nw -me -mep \”$sivfile|defaults|0|$adsproj\”
-mec \”$customRules\” -env de_sim”);
system(“egrep -e ERROR -e WARNING -e Error -e Warning $adsproj/me_err.log”);
}
close LOGFILE;

SrcPath Source project/design path

DefaultDsnName Default design name to be used for SIV translation

DestPath Destination project path

UnitPref Unit preference (0: mil, 1: millimeter, 2: micron)
Example D-3

Batch Mode Translation
D-4 Example

Appendix E: Known Issues

Annotation Location

By default, component annotation is placed (relative to the symbol) in the same
location as it was in Series IV. To allow the translator to move it (where applicable) to
the default ADS location, change the MIGRATION_MOVE_ANNOTATION variable
from TRUE to FALSE. For details, refer to “Customizing Translator Variables” on
page C-10.

Artwork Macros

A large number of AEL functions changed between Series IV and ADS, however those
typically used in artwork macros have changed very little. The main change is that
the functions in ADS include ‘de_’ in front of the old function name. For example, in
Series IV there was a function, draw_rect, and in ADS that same function is
de_draw_rect. While the old function names are still supported, we recommend that
for any new macros you create, you use the new function names.

Your Series IV artwork macros should require very little change. One change that
you must make however is to add the following line to the beginning of each file:

de_set_global_db_factor();

Node Names

The SIV translator allows the same name to be used for test points in different
designs (e.g., a test bench and a sub-network). During translation to ADS, these test
points are translated into named nodes. However, ADS does not allow the same name
to be used for two different nodes, even if they are used in different designs in the
hierarchy. When different designs with common test point names are translated into
ADS, the named nodes need to be manually renamed so that each name is unique.

Port Rotation

After translating, you will notice that some ports are incorrectly rotated. This is due
to the fact that ports do not have any rotation information in Series IV. You can rotate
them if you like, but the design will simulate correctly as-is.
E-1

Known Issues
AEL Functions

The log Function

Series IV provided the log function

log()

which returned the natural logarithm. ADS has three log functions:

Because the function log() is legitimate in ADS, the translator does not replace the
Series IV function and your results will vary. To get the same results you did in
Series IV, replace log() with ln().

Miscellaneous Functions

The following script can be used to search for functions that may need modification
after migration. Save the text to a file (call it “check_for_funtions.pl”).

Execute this script either by typing

check_for_functions.pl

at the command line (if a perl executable is in your path) or by typing (shown here for
a PC installation):

%HPEESOF_DIR%\tools\bin\perl check_for_functions.pl

where the HPEESOF_DIR path has been set to point to your installation of ADS.

PERL Script "check_for_functions.pl"
#
This function is provided as a convenience to help find possible code in a Series IV
Senior model that may need changes to be compatible with ADS user-compiled models.
The script finds functions whose definition has changed and for which the developer
should check for possible unexpected results.
#
Execute this script either by typing the name at the command line (if a perl executable is
in your path) or by typing %HPEESOF_DIR%\tools\bin\perl check_for_functions.pl where the
HPEESOF_DIR path has been set to point to your installation of ADS. The script only checks
files in the current directory, so typically this script should be run from your project's
networks directory.
#
copyright Agilent Technologies, Inc. 2000

Each of the following strings will be search for in the file list (additional strings
can be added anywhere in this section):

ln() Returns the natural logarithm of an integer, real, or complex
number

log() or log10() Returns the base 10 logarithm of an integer or real number
E-2

For most unit functions, ADS will return the value 1.0 and the changes of the units is
taken care of on the parameter value scale factor:
 push @function_list, "get_funit";
 push @function_list, "get_runit";
 push @function_list, "get_gunit";
 push @function_list, "get_lunit";
 push @function_list, "get_cunit";
 push @function_list, "get_lenunit";
 push @function_list, "get_tunit";
 push @function_list, "get_angunit";
 push @function_list, "get_curunit";
 push @function_list, "get_volunit";
 push @function_list, "get_watt";

Because parameter names and index positions may have changed, code using these
functions should be checked carefully:
 push @function_list, "get_params";
 push @function_list, "get_user_inst";

This function is mapped to send_info_to_scrn:
 push @function_list, "send_info_to_file";

 opendir CURRDIR, "." or die "Error: $!";
 @file_list = grep /\.[chCH]$/,readdir CURRDIR ;
 closedir CURRDIR;

 foreach $file (@file_list)
 {
 print $file;
 print ": ";
 open(CURRFILE, "<$file");
 $count = 0;
 $match_flag = 0;
 while (<CURRFILE>)
 {
$count++;
foreach $function (@function_list)
{
 if (/$function/)
 {
 if ($match_flag == 0)

 {
 print " Possible changes needed on lines:\n";

 }
 $match_flag = 1;
 print $file
 print " ";
 print $count;
 print " ";
 print trim("$_");
 print "\n";
 }
}
 }
 if ($match_flag == 0)
 {
print "Changes probably not needed.\n";
 }
 }

sub trim {
E-3

Known Issues
my @out = @_;
for (@out)
{
 s/^\s+//;
 s/\s+$//;
}
return wantarray ? @out : $out[0];
}

E-4

Index

A
annotation location, changing default, E-1
artwork macros, updating, E-1

B
batch mode translation, D-1

C
component annotation location, changing

default, E-1
conductivity values

differences between Series IV and ADS, 1-2
custom rules file

creating, C-1
using, C-8

customization, translator, C-1

D
Data Items

translation of, 1-3
design libraries, translating, 3-1

E
error messages, 2-4

I
importing

designs, 2-1
projects, 2-1

L
libraries, translating, 3-1
log file messages, 2-4

M
macros, updating, E-1
model differences between Series IV and

ADS, 1-2

N
node names, E-1

P
port rotation, E-1

R
rules file, custom

creating, C-1
using, C-8

S
simulating translated designs, 2-5
simulation results

differences in
designs using nonlinear vendor library

components, 1-4
harmonic balance, 1-3
phase noise, 1-4
S-parameter data interpolation, 1-4

T
test benches

translation of, 1-2
test labs

translation of, 1-2
translating

design libraries, 3-1
designs, 2-1
projects, 2-1

translation
batch mode, D-1
error messages, 2-4

U
units

differences between Series IV and ADS, 1-2
user-defined models

updating, 4-1

V
variables

setting for site-wide libraries, 3-3
translator, customizing, C-10

vendor library components
simulation temperature of, 1-4
Index-1

Index-2

	Contents
	Chapter 1: Series IV Migration Overview
	Changes Between Series�IV and ADS

	Chapter 2: Importing and Simulating
	Importing Designs
	Simulating Imported Designs

	Chapter 3: Translating Design Libraries
	Copying Designs to a Series IV Project
	Translating Subnetwork Design Files

	Relocating Designs for Site-Wide Use
	Translating the Top-Level Designs

	Chapter 4: Updating User-Defined Models
	Chapter 5: Translation Example
	Appendix A: Series IV Items Not Translated
	Appendix B: Nonlinear Model and Component Changes from Series�IV to ADS
	PN-Junction Diode Model
	Bipolar Transistor Model
	EEsof Bipolar Transistor Model
	Junction FET Model
	MOSFET Models (Levels 1, 2, and 3)
	Curtice-Quadratic GaAsFET Model
	Advanced Curtice-Quadratic GaAsFET Model
	Curtice-Cubic GaAsFET Model
	Statz (Raytheon) GaAsFET Model
	TriQuint Scalable Nonlinear GaAsFET Model
	Equation-Based Nonlinear Components

	Appendix C: Translator Customization
	Writing Custom Translation Rules
	Retrieving Parameter Values from Series IV Data Items
	Setting Parameter Values Using AEL Functions
	Mapping Component Pin Changes
	Mapping to a Component Based on Parameter Specifics

	Using a Customized Rules Files
	Customizing Translator Variables

	Appendix D: Batch Mode Translation
	hpeesofme Setup
	Windows
	UNIX

	Executing hpeesofme
	Additional Option Information

	Example

	Appendix E: Known Issues
	Annotation Location
	Artwork Macros
	Node Names
	Port Rotation
	AEL Functions

	Index

